Optimal Affinity Enhancement by a Conserved Flexible Linker Controls p53 Mimicry in MdmX.
نویسندگان
چکیده
MdmX contains an intramolecular binding motif that mimics the binding of the p53 tumor suppressor. This intramolecular binding motif is connected to the p53 binding domain of MdmX by a conserved flexible linker that is 85 residues long. The sequence of this flexible linker has an identity of 51% based on multiple protein sequence alignments of 52 MdmX homologs. We used polymer statistics to estimate a global KD value for p53 binding to MdmX in the presence of the flexible linker and the intramolecular binding motif by assuming the flexible linker behaves as a wormlike chain. The global KD estimated from the wormlike chain modeling was nearly identical to the value measured using isothermal titration calorimetry. According to our calculations and measurements, the intramolecular binding motif reduces the apparent affinity of p53 for MdmX by a factor of 400. This study promotes a more quantitative understanding of the role that flexible linkers play in intramolecular binding and provides valuable information to further studies of cellular inhibition of the p53/MdmX interaction.
منابع مشابه
Autoinhibition of MDMX by intramolecular p53 mimicry.
The p53 inhibitor MDMX is controlled by multiple stress signaling pathways. Using a proteolytic fragment release (PFR) assay, we detected an intramolecular interaction in MDMX that mechanistically mimics the interaction with p53, resulting in autoinhibition of MDMX. This mimicry is mediated by a hydrophobic peptide located in a long disordered central segment of MDMX that has sequence similarit...
متن کاملMDMX contains an autoinhibitory sequence element.
MDM2 and MDMX are homologous proteins that bind to p53 and regulate its activity. Both contain three folded domains and ~70% intrinsically disordered regions. Previous detailed structural and biophysical studies have concentrated on the isolated folded domains. The N-terminal domains of both exhibit high affinity for the disordered N-terminal of p53 (p53TAD) and inhibit its transactivation func...
متن کاملAffinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: identification of novel peptidic inhibitors.
MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein-protein interactions (PPIs) of MDM2-p53 and MDMX-p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2-p53 and MDMX-p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been esta...
متن کامل14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation.
It has been shown that MDMX inhibits the activity of the tumor suppressor p53 by primarily cooperating with the p53 feedback regulator MDM2. Here, our study shows that this inhibition can be overcome by 14-3-3gamma and Chk1. 14-3-3gamma was identified as an MDMX-associated protein via an immuno-affinity purification-coupled mass spectrometry. Consistently, 14-3-3gamma directly interacted with M...
متن کاملStructural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX.
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53--a cellular process initiated by MDM2 and/or MDMX binding to the N-terminal transactivation domain of p53. MDM2 and MDMX in many tumors confer p53 inactivation and tumor survival, and are important molecular targets for anticancer therapy. We screened a duodecimal peptide phage libr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 112 10 شماره
صفحات -
تاریخ انتشار 2017